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We give the necessary and sufficient conditions for the exponential mean square 
stability of linear systems with constant coefficients subjected to the action of 
correlated white noise . These conditions are expressed in terms of the transfer 
functions. We present example. 

Papers [l - 91 were devoted to the stability problem for stochastic systems. 
Exponential mean square stability of linear systems with white noise was exam- 

ined in detail in [ 1, 4, 6 - 91. The stability criterion proposed in [3, 41 requires 
the computations of determinants of upto order Y (Y + I)/& where v is the sys- 
tem’s order. A criterion was established in [9] for a speciai class of systems, re- 
quiring a knowledge only of the system’s transfer matrix from noise to outputs, 

moreover, taking count in the systems of the number of perturbing noise some- 
times makes it possible to avoid the laborious calculations of higher-order det- 

erminants. In this paper the investigative method in [9] is extended to a wider 
class of linear systems which are under the parametric action of dependent noise . 
In many cases the criterion proposed here permits us to restrict ourselves to the 

computation of determinants of orders less than both the number of noise pertu- 
rbing the system as well as the quantity v (Y + 1) / 2. Just as in [9] the criterion 
is applicable to systems given by a transfer matrix from noise to outputs. Every- 
where below, by the stability of a system with noise we mean the exponential 

mean square stability. 

1. The clra~ of rynteml being contidered. Wereckonthat the whole 
collection of noise in the system can be divided into n groups such that the noise from 
different groups are independent of each other. By the symbol kl we denote the number 

of noise in the group numbered I, by the symbol Wl’ f a vector comprised from the kl 

noise of this group, by the symbol Bll I the ( kl X kl ) - dimensional covariance matrix 
of the vector-valued noise Wl’ 

ICIIV,’ (‘) [IV,’ (,r)]’ = /I,,6 (t - .S) 

The prime denotes the matrix transpose. We consider a system of linear Ito differential 

equations 7X 

r’ = Ps + 2 rlla,‘lY,‘, G1 = ‘.I’” (1.1) 
f=l 

Here P, ~1, rl are constant matrices. The vector 5 of the variables is of dimension v, 
the matrix p is of dimension Y X Y. 

We shall examine two types of systems. In the first type belong systems (1.1) in which 
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it are v -dimensional vectors and rl are of dimension v X kl. In systems of the first 
type uI are kl -dimensional column vectors, and uL’ Wl’ are scalar noise . In the sec- 
ond type belong systems (1.1) in which ql are of dimension v ,~ kl and rt are kl - 

dimensional column vectors. In systems of the second type o1 are scalars, and the prime 
in the first formula in (1.1) can be dropped. We see that the linear systems considered 

in [9] belong both to the first type as well as to the second. We take it that system (1.1) 
is completely controllable and observable. 

We introduce the matrices 

= FI' (P - al)-’ q,, (1, m = 1, 2, . . ., n) (1.2) 

where h is a complex number. As is well known, system (1.1) can be specified by its 
transfer matrix to within a transformation of the form y = Sz, det S # 0 . The transfer 
matrix of system (1.1) from the inputs vrn = a,,,’ W, (m = i,2, . . . . n) to the outputs 
01 (I = 1, 2, . . . . IL) consists of blocks xlrn and has the form 

x;, &I * * ’ x,, @I 
x (h) = ; ; 

x,, (a). . . x,, (V 

The fundamental characteristics of the matrix dimensions 
systems of the first and second types are presented below 

(i .3) 

(k = kl + k, -j- . . . fk,,) for 

tv; 41 PI flz a1 w, Xlm (a) Xv4 
1 klxl vxz vxkl &xl scalar klxl kxn 
2 klxl vxkl vx1 scalar &xi 1xkl nxk 

We represent the matrices xlrn (3r) in the form 

xZm (‘1 = A,, (a) 

where ylm (1) is a matrix polynomial while Arm (h) is a scalar polynomial. Here the 
degree of the matrix polynomial vlrn (h) is less than the degree of the scalar polynomial 

Aim (1) whose leading coefficient is taken to be unity. 

2. Stability coudition,. Consider a system of first type. We set 

6,, (V = [T[, (- k)l’ B1lTlrn PJ 

we define a scalar polynomial zl, (1) by the equation 

rlrn (1) A,, (- 1) + rIrn (- 1) Arm (h) = 6,, (1). 

(2.1) 

(2.2) 

under the condition that the degree of Q,,, (h) is less than the degree of the polynomial 
Arm (h). .In the system of first type we set up an ( n X n )-dimensional matrix R = 

11 plm 11 by the formulas 
rrm (I) 

P -- 
177% -[l~--rca - tim Arm(h) (2.3) 

In a system of second type we set up the matrix R by the relations 

6,, (1.) = rIln (V R,,, Ir,, (-VI’ (2.4j 

and by formulas (2.2), (2.3). 
Theorem 1. Let system (1.1) be a system of first or second type, and let the vec- 

tor-valued noise WI’, . . . . W,’ be mutually independent. For the stability of the system 
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it is necessary and sufficient that its transfer matrix (1.3) have poles in the open left 
halfplane and that the eigenvalues of the( n X n )-dimensional matrix R = \I plrn /I, 

defined by formulas (2.1)-(2.3) or (2.2) - (2.4), be less than unity in absolute value. 
The proof of Theorem 1 is carried out by the same scheme as for Theorem 1 in [9]. 

Here we should take into account that the stochastic derivative of the quadratic form 

V (5) = x’Hx relative to a system of the first type reduces to the form 
n 

Ll’ = 2x’HPx +x’ ( 2 qi’lIgiri/3iiri’ j z 

i=l 

while for a system of the second type,, to the form 

LV = 3x’rIPx + I’ [ i; sp [qi’NqiB,‘J ri qj x 

i=l 

The symbol sp denotes the trace (spur) of the matrix. 
Note 1. To determine the matrix R it is necessary to solve the following problem. 

Suppose we are given 
A (h) = hS + Alhs-i 1_ . . . + As, 6 (A) = i 6ih2(+iJ 

i=l 

where A (A) is a Hurwitz polynomial. We are required to compute the quantity 

where the polynomial r (Iz) is determined from the equation 

r (h) A (--h) + r (--h) A (A) = 6 (h) (2.6) 

By equating the coefficients of like even powers of h in the left and right hand sides of 
(2.6). we obtain a linear algebraic system in the s unknown coefficients of the polyno- 
mial 27 (--h) = plhs-’ + . . . +&. Since A (h) is a Hurwitz polynomial, the determinant 

of this system is positive and, consequently, Eq. (2.2) has a unique solution for any 
right hand side. The quantity p is computed from the formula 

p = (- l)s-‘pI / 2 (‘2.7) 

Note 2. It can be shown that if A (h) is a Hurwitz polynomial in (2.6). while the 
polynomial 6 (h) is nonnegative for h = io (-x < o < + a), then the quantity (2.3) 
is nonnegative. Because of this, R is a matrix with nonnegative elements. 

Note 3. The ( n X n )-matrix R with nonnegative elements has eigenvalues less 
than unity in absolute value if and only if all the successive principal minors of the 
matrix (I - R) are positive [lo]. Let the matrix R be nonzero. By pO we denote the 

smallest real positive root of the equation 

tlet (I - pR) = 0 (2.8) 

Then the spectrum of the matrix pR (p > 0) lies inside the unit circle for all u < PO 
and only for these values of p. 

Example. Consider the system 

y(“J + (1 i_ $1’) y(i) + (3 + $2’) y + ($2’ - 1) i = 0 

z(2) + (1 -t 51’) y(l) + (1 + 52’) y = (J 
(2.9) 

Here $I’, $A’, cl’, c?‘is the white noise.We assume that the noise qi’ is uncorrelated 
with the noise 5j.. We denote 
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We assume that the covariance matrices of noise IV,‘, IV,’ equal, respectively, 

We find the transfer matrix from the inputs 

‘p1=$1’21(‘) + $?’ (y + z), 

to the outputs 

31 = 
y(‘) II I y(l) 

y+zl' 
b2 = II I Y 

We obtain 

A (h) = A4 + A3 + 3~2 + h + I 

Clearly, A (A) is a Hurwitz polynomial. The polynomials 

6,, (V = [Yr, (- I),’ Brr”fl,n (h) (!, 1)1 = 1, 2) 

take the form 

61, (V = --b,,ha + P,, + b,,P.’ - 3b,,h2 + b,, 
61, (A) = &,A4 + (---b,, - 2b,, + 7b,,) A2 + I(%, 
&l(h) = (-cl*) h" -t wzh4 

62, (A) = (--CllP2 + %a 

We determine the quantity (2.7). We obtain 

p = (64 - 6,) + (6, - &I / 2 

Consequently, the elements of the ( 2 X 2 )-dimensional matrix I$ = 11 oij 11 are the 
numbers 

or1 = bll + b,, + 3b,, = 0.45, pla = b,, I2 + b,, _I- 13 b,, = 1.17 
p*r = err + c22 / 2 = 0.21, pa.2 = err I2 + c,, = 0.24 

For ( 2 .< 2 )-dimensional matrices R the smallest real root of (2.8) is given by the 
formula --- 

~, (2 tlet II)-’ [sp R - I/(sp Ioa - Met R], det R + IJ 
, 

(“1’ /!)-I dcl II = ll 

In the case being considered ~0 = 1 .ii > 1. Thus, system (2.9) is stable. Stability is 
preserved if the intensities of the noise increases by less than V-,& z 1.~8 times. Other- 
wise the system loses stability. (It is assumed that the correlation coefficients remain 

the same as the noise intensity vaiies). 

8. Linear differential equations of order v. Let us consider theoft- 
encountered case when a system of the first type is described by a linear differential 



5'20 M.V.Levlt 

equation of order v 

Y(“) -i- (Al + qV’) Y(“-‘) + . . . -/- (A, + ql') Y = 0 (3.1) 

Here the noise qi’ comprises one group from the v noise W’ with covariance matrix B 

MCV’ (t) [TV (S)l’ = U6 (t - s) (IV’ = II Vi’ Il;zl! ’ = II bij Ill 

Consider the polynomial 

6 (h) = 2 (-l)%jhi+j-= (3.2) 

i, I=1 

From Theorem 1 we conclude the following. 
Theorem 2. Equation (3.1) is stable if and only if A (h) = h” + A,h”-’ + . . . +A,, 

is a Hurwitz polynomial and the nonnegative number p defined by formulas (2.5), (2.6) 

(3.2) is less than unity. 
Equation (3.1) was considered in [3, 4, 71. The stability criterion for (3.1) proposed 

in [4, 71 is equivalent to Theorem 2. Its theoretical foundation is ideologically close to 
the method of the present paper; the difference in the criteria is in the method of com- 
puting certain characteristics of Eq. (3.1). As was noted in [7], only those correlation 
coefficients bij for which the number i + j is even, prove to have an influence on the 
stability of Eq. (3.1). This follows from the fact that in polynomial (3.2) only the 
coefficients of even powers of h are nonzero, and they are a linear combination of corr- 

elation coefficients with an even sum of the indices. 

Stability conditions for second- and third-order Eqs. (3.1) can be found in [4]. We 

present the stability conditions for differential equations (3.1) for v = 4 and 5, obtained 

with the aid of Theorem 2. It is assumed that the trivial solution of the equations being 
considered is asymptotically stable in the absence of the noise . For the equation 

Y@) + (a + rlr’) YC3) t- (6 + q3’) y@) + (c + r)“) y(‘) + (d + r)l’) y x 0 

the stability condition is 

(a6 - c) 611 + d [a (- 2613 + 6~2) + c (- 26~, + 633) + (6c - ad) 6~]< 2 d (a6c - ca - a” d) 

for the equation 

Yc5) + (a + ~5’) Y(‘) + (6 + q,‘) Y(‘) i (c + Q’) yc2) + (I! + Q” y(l) + (e + 111’)~ = 0 

the stability condition is 

(cm - ~2) 61, + m (-26~ + 62,) + I(2616 - 262, + 6,s) + k (-263, + 6~) 

+ (bk - dl) b,, < 2mk - la (k = cd - be, I= ad - e, m = ab - c) 

4. One result of the oppllcrtfon of Theorem 1. We considerthe 
linear system 

5’ = (P + 9’) 5, rl’=Ilrlij’/I~j=1 (4.1) 

where ‘1 ’ is a matrix of dependent white noise 9ij.s We introduce the 1 -dimensional 

column vectors 
IV,’ = II rl! j’ ll~=19 MU’,’ (t) [TV,’ (C)j’ = II,,6 (t - s) 

u; = 11 ‘l,[’ Il;E,7 

System (4.1) can be written as 

MU,’ (t) [U,’ (s,]’ = rlp (’ - s) 
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5’ = Px + 2 e,x'W,' (4.2) 

or else as 

2’ = Px + 2 x’e,U,’ (4.3) 

Here el is a vector of dimension v, in which the I-th component equals unity and the 

remaining components are zero. 

If in system (4.2) the noise w;, . . . . w,’ is independent, then (4.2) is a system of 

the.first type, however, if in system (4.3) the noise ul’, . . . . U,’ is independent, then 

system (4.3) is a system of the second type. We introduce the matrix polynomial D (1) = 
(11 - P)-1 det (h1 - P). We determine the ( Y 2( Y )-dimensional matrix R by for- 

mulas (2.2), (2.3). Here, in (2.2) we take it that 

6,, (A)= e,‘[D(-Qi’B,,n(k)e,,, (i.4) 

if (4.2) is a system of the first type, or 
6,, (h) = el’Ll (h) C,, [n(- h) ’ el (4.5) 

if (4.3) is a system of the second type. We obtain the following assertion by applying 
Theorem 1. 

Corollary 1. In system (4.1) let P be a Hurwitz matrix, while in the noise mat- 
rix 9’ either the rows (W,“) or the columns (U,‘) are mutually independent. Let matrix 
R be determined by formblas (2.2). (2.3). (4.4) if the rows are independent, or by 

formulas (2.2), (2.3), (4.5) if the columns are independent. System (4.1) is stable if 
and only if the eigenvalues of R are less than unity in absolute value. 
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A second-order piecewise-linear dynamic system with jumps in the representative 
point on the juncture lines is investigated on a cylindrical phase space. 

We consider the equation 

F ((p + 2kn) z F (cp) (k = (“, + 1,. . .), 
1-1 for 

F (q) = , 
--n<cp<O 

1 for 
O<cp<n 

This equation describes the dynamics of a phase automatic frequency control (aft) sys- 
tern with an integrating filter [1, 21 and a rectangular phase detector characteristic [3] 
with an approximate accounting for the lag Cl]. It has no meaning for values of q at 

which F (cp) suffers discontinuities. By intIoducing new variables and notation 

we replace the equation in the strips -n < cp < 0 and 0 < cp < n by the systems 

‘p’ = Y, I/’ = ci-‘n - y (--<<<w (I) 

qp’ = II7 ?/’ = - p-‘n - Y (0 < cp < TI) (2) 

Here the dots denote differentiation with respect to t0 ; a cylinder serves as the phase 
space of the system. Systems (1) and (2) permit us to trace the motion of the represent- 
ative point upto the instant when it hits onto one of the straight lines q = 0 or cp = n. 
The subsequent motion of the representative point requires an extension of the definit- 
ion. We should indicate how much time it spends on the straight line, how it moves 
along it, at which point it leaves, and which of systems (1) or (2) describes its subsequ- 
ent motion. We make use of the extended definition given in [4]. (When applying the 
formula (*) in [4] it is necessary to take into account the scales of t and y). 

l ) In [4] (English Version), page 756, line four from the top the erroneous equation r = 
2b, h 2 6 , as given in the Russian Original Edition, should read r = 2bh > 0. 


